Mantis shrimp inspires new material – made by bacteria


A Well a little chaotic, as it happens. When the researchers tested the strength of each mesh, the Bouligand type IV structure absorbed 20 times more energy than the type I. “This type of microstructure ensures that this type of composite is very strong,” explains Qiming Wang, engineer from the University of Southern California. , co-author on a new paper describe the results in the journal Advanced materials. “When you have a crack, that crack propagates through the torsion pattern to dissipate the energy inside the material.” In fact, the material absorbs more energy than natural mother-of-pearl (mother-of-pearl), which gives some shells their strength, and also beats existing man-made materials, say Wang and his colleagues.

Just as the mantis shrimp hammer absorbs the energy of its punches without slamming, so do materials developed with this new method. For potential uses, Wang says to think of body armor, which must dissipate the energy of a bullet. Calcium carbonate is also quite light, so scientists might also be able to grow stronger panels for airplanes or even skins for the robots, Wang said.

“It’s, for me, a way of doing manufacturing in the future, and I’m not the only one saying it,” said Pablo Zavattieri, civil engineer from Purdue University, who was not involved. to this research. In traditional manufacturing, faults can creep in. Nature, on the other hand, has, over millions of years, developed the wonderful Bouligand structure in the mantis shrimp hammer, and it is a pattern that can be reproduced with a simple trellis and bacterial bath. “Nature is, in this way, impeccable,” says Zavattieri. “Nature is a 3D printer.”

Another thing that makes this bacterial material special is its ability to regenerate itself. Like, what if instead of building roads, we grown up their? “If we have damage, we just have to put bacteria in and that can repel them,” says Wang. “These structures are very strong, very strong and can potentially repair themselves.”

The researchers aren’t quite there yet – they got the bacteria to grow minerals under controlled laboratory conditions, and even then it was only small amounts. Scaling up road construction would entail additional engineering challenges; for example, getting the right ratio of scaffolding to hardening material. But Zavattieri is already currently working on 3D printing concrete. “I don’t think it’s super crazy,” he says. “We can totally ask the robots to print the classic scaffolding, leave the bacteria there, and then let them grow the material for 10 days.”

So maybe one day the shameless bashing of the mantis shrimp could help mend America’s Broken Infrastructure, instead of just breaking your thumbs.


More WIRED stories



Source link

Leave a Reply

Your email address will not be published. Required fields are marked *